direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C22.56C24, C10.1712+ 1+4, C10.1232- 1+4, C4⋊D4⋊18C10, C22⋊Q8⋊19C10, C4.4D4⋊16C10, C42.54(C2×C10), C42.C2⋊11C10, (C4×C20).295C22, (C2×C20).683C23, (C2×C10).382C24, (D4×C10).224C22, C22.D4⋊14C10, C22.56(C23×C10), C23.25(C22×C10), (Q8×C10).187C22, C2.23(C5×2+ 1+4), C2.15(C5×2- 1+4), (C22×C20).462C22, (C22×C10).108C23, (C5×C4⋊D4)⋊45C2, C4⋊C4.34(C2×C10), (C5×C22⋊Q8)⋊46C2, (C2×D4).37(C2×C10), (C5×C4.4D4)⋊36C2, C22⋊C4.7(C2×C10), (C2×Q8).30(C2×C10), (C5×C42.C2)⋊28C2, (C5×C4⋊C4).251C22, (C22×C4).73(C2×C10), (C2×C4).42(C22×C10), (C5×C22.D4)⋊33C2, (C5×C22⋊C4).92C22, SmallGroup(320,1564)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C22.56C24
G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=g2=1, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=bd=db, geg=be=eb, bf=fb, bg=gb, fdf-1=cd=dc, ce=ec, cf=fc, cg=gc, gdg=bcd, fef-1=bce, fg=gf >
Subgroups: 362 in 220 conjugacy classes, 142 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C20, C2×C10, C2×C10, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C22.56C24, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, Q8×C10, C5×C4⋊D4, C5×C22⋊Q8, C5×C22.D4, C5×C4.4D4, C5×C42.C2, C5×C22.56C24
Quotients: C1, C2, C22, C5, C23, C10, C24, C2×C10, 2+ 1+4, 2- 1+4, C22×C10, C22.56C24, C23×C10, C5×2+ 1+4, C5×2- 1+4, C5×C22.56C24
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 35)(2 31)(3 32)(4 33)(5 34)(6 160)(7 156)(8 157)(9 158)(10 159)(11 17)(12 18)(13 19)(14 20)(15 16)(21 27)(22 28)(23 29)(24 30)(25 26)(36 55)(37 51)(38 52)(39 53)(40 54)(41 47)(42 48)(43 49)(44 50)(45 46)(56 75)(57 71)(58 72)(59 73)(60 74)(61 67)(62 68)(63 69)(64 70)(65 66)(76 95)(77 91)(78 92)(79 93)(80 94)(81 87)(82 88)(83 89)(84 90)(85 86)(96 115)(97 111)(98 112)(99 113)(100 114)(101 107)(102 108)(103 109)(104 110)(105 106)(116 135)(117 131)(118 132)(119 133)(120 134)(121 127)(122 128)(123 129)(124 130)(125 126)(136 155)(137 151)(138 152)(139 153)(140 154)(141 147)(142 148)(143 149)(144 150)(145 146)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 20)(7 16)(8 17)(9 18)(10 19)(11 157)(12 158)(13 159)(14 160)(15 156)(26 34)(27 35)(28 31)(29 32)(30 33)(36 41)(37 42)(38 43)(39 44)(40 45)(46 54)(47 55)(48 51)(49 52)(50 53)(56 61)(57 62)(58 63)(59 64)(60 65)(66 74)(67 75)(68 71)(69 72)(70 73)(76 81)(77 82)(78 83)(79 84)(80 85)(86 94)(87 95)(88 91)(89 92)(90 93)(96 101)(97 102)(98 103)(99 104)(100 105)(106 114)(107 115)(108 111)(109 112)(110 113)(116 121)(117 122)(118 123)(119 124)(120 125)(126 134)(127 135)(128 131)(129 132)(130 133)(136 141)(137 142)(138 143)(139 144)(140 145)(146 154)(147 155)(148 151)(149 152)(150 153)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 94)(7 95)(8 91)(9 92)(10 93)(11 82)(12 83)(13 84)(14 85)(15 81)(16 87)(17 88)(18 89)(19 90)(20 86)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 120)(7 116)(8 117)(9 118)(10 119)(11 128)(12 129)(13 130)(14 126)(15 127)(16 121)(17 122)(18 123)(19 124)(20 125)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(96 155)(97 151)(98 152)(99 153)(100 154)(101 147)(102 148)(103 149)(104 150)(105 146)(106 145)(107 141)(108 142)(109 143)(110 144)(111 137)(112 138)(113 139)(114 140)(115 136)(131 157)(132 158)(133 159)(134 160)(135 156)
(1 55 35 36)(2 51 31 37)(3 52 32 38)(4 53 33 39)(5 54 34 40)(6 140 160 154)(7 136 156 155)(8 137 157 151)(9 138 158 152)(10 139 159 153)(11 148 17 142)(12 149 18 143)(13 150 19 144)(14 146 20 145)(15 147 16 141)(21 47 27 41)(22 48 28 42)(23 49 29 43)(24 50 30 44)(25 46 26 45)(56 81 75 87)(57 82 71 88)(58 83 72 89)(59 84 73 90)(60 85 74 86)(61 76 67 95)(62 77 68 91)(63 78 69 92)(64 79 70 93)(65 80 66 94)(96 127 115 121)(97 128 111 122)(98 129 112 123)(99 130 113 124)(100 126 114 125)(101 135 107 116)(102 131 108 117)(103 132 109 118)(104 133 110 119)(105 134 106 120)
(6 20)(7 16)(8 17)(9 18)(10 19)(11 157)(12 158)(13 159)(14 160)(15 156)(56 75)(57 71)(58 72)(59 73)(60 74)(61 67)(62 68)(63 69)(64 70)(65 66)(76 95)(77 91)(78 92)(79 93)(80 94)(81 87)(82 88)(83 89)(84 90)(85 86)(96 107)(97 108)(98 109)(99 110)(100 106)(101 115)(102 111)(103 112)(104 113)(105 114)(116 127)(117 128)(118 129)(119 130)(120 126)(121 135)(122 131)(123 132)(124 133)(125 134)(136 141)(137 142)(138 143)(139 144)(140 145)(146 154)(147 155)(148 151)(149 152)(150 153)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,35)(2,31)(3,32)(4,33)(5,34)(6,160)(7,156)(8,157)(9,158)(10,159)(11,17)(12,18)(13,19)(14,20)(15,16)(21,27)(22,28)(23,29)(24,30)(25,26)(36,55)(37,51)(38,52)(39,53)(40,54)(41,47)(42,48)(43,49)(44,50)(45,46)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,115)(97,111)(98,112)(99,113)(100,114)(101,107)(102,108)(103,109)(104,110)(105,106)(116,135)(117,131)(118,132)(119,133)(120,134)(121,127)(122,128)(123,129)(124,130)(125,126)(136,155)(137,151)(138,152)(139,153)(140,154)(141,147)(142,148)(143,149)(144,150)(145,146), (1,21)(2,22)(3,23)(4,24)(5,25)(6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(26,34)(27,35)(28,31)(29,32)(30,33)(36,41)(37,42)(38,43)(39,44)(40,45)(46,54)(47,55)(48,51)(49,52)(50,53)(56,61)(57,62)(58,63)(59,64)(60,65)(66,74)(67,75)(68,71)(69,72)(70,73)(76,81)(77,82)(78,83)(79,84)(80,85)(86,94)(87,95)(88,91)(89,92)(90,93)(96,101)(97,102)(98,103)(99,104)(100,105)(106,114)(107,115)(108,111)(109,112)(110,113)(116,121)(117,122)(118,123)(119,124)(120,125)(126,134)(127,135)(128,131)(129,132)(130,133)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153), (1,96)(2,97)(3,98)(4,99)(5,100)(6,94)(7,95)(8,91)(9,92)(10,93)(11,82)(12,83)(13,84)(14,85)(15,81)(16,87)(17,88)(18,89)(19,90)(20,86)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,56)(2,57)(3,58)(4,59)(5,60)(6,120)(7,116)(8,117)(9,118)(10,119)(11,128)(12,129)(13,130)(14,126)(15,127)(16,121)(17,122)(18,123)(19,124)(20,125)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(96,155)(97,151)(98,152)(99,153)(100,154)(101,147)(102,148)(103,149)(104,150)(105,146)(106,145)(107,141)(108,142)(109,143)(110,144)(111,137)(112,138)(113,139)(114,140)(115,136)(131,157)(132,158)(133,159)(134,160)(135,156), (1,55,35,36)(2,51,31,37)(3,52,32,38)(4,53,33,39)(5,54,34,40)(6,140,160,154)(7,136,156,155)(8,137,157,151)(9,138,158,152)(10,139,159,153)(11,148,17,142)(12,149,18,143)(13,150,19,144)(14,146,20,145)(15,147,16,141)(21,47,27,41)(22,48,28,42)(23,49,29,43)(24,50,30,44)(25,46,26,45)(56,81,75,87)(57,82,71,88)(58,83,72,89)(59,84,73,90)(60,85,74,86)(61,76,67,95)(62,77,68,91)(63,78,69,92)(64,79,70,93)(65,80,66,94)(96,127,115,121)(97,128,111,122)(98,129,112,123)(99,130,113,124)(100,126,114,125)(101,135,107,116)(102,131,108,117)(103,132,109,118)(104,133,110,119)(105,134,106,120), (6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,107)(97,108)(98,109)(99,110)(100,106)(101,115)(102,111)(103,112)(104,113)(105,114)(116,127)(117,128)(118,129)(119,130)(120,126)(121,135)(122,131)(123,132)(124,133)(125,134)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,35)(2,31)(3,32)(4,33)(5,34)(6,160)(7,156)(8,157)(9,158)(10,159)(11,17)(12,18)(13,19)(14,20)(15,16)(21,27)(22,28)(23,29)(24,30)(25,26)(36,55)(37,51)(38,52)(39,53)(40,54)(41,47)(42,48)(43,49)(44,50)(45,46)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,115)(97,111)(98,112)(99,113)(100,114)(101,107)(102,108)(103,109)(104,110)(105,106)(116,135)(117,131)(118,132)(119,133)(120,134)(121,127)(122,128)(123,129)(124,130)(125,126)(136,155)(137,151)(138,152)(139,153)(140,154)(141,147)(142,148)(143,149)(144,150)(145,146), (1,21)(2,22)(3,23)(4,24)(5,25)(6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(26,34)(27,35)(28,31)(29,32)(30,33)(36,41)(37,42)(38,43)(39,44)(40,45)(46,54)(47,55)(48,51)(49,52)(50,53)(56,61)(57,62)(58,63)(59,64)(60,65)(66,74)(67,75)(68,71)(69,72)(70,73)(76,81)(77,82)(78,83)(79,84)(80,85)(86,94)(87,95)(88,91)(89,92)(90,93)(96,101)(97,102)(98,103)(99,104)(100,105)(106,114)(107,115)(108,111)(109,112)(110,113)(116,121)(117,122)(118,123)(119,124)(120,125)(126,134)(127,135)(128,131)(129,132)(130,133)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153), (1,96)(2,97)(3,98)(4,99)(5,100)(6,94)(7,95)(8,91)(9,92)(10,93)(11,82)(12,83)(13,84)(14,85)(15,81)(16,87)(17,88)(18,89)(19,90)(20,86)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160), (1,56)(2,57)(3,58)(4,59)(5,60)(6,120)(7,116)(8,117)(9,118)(10,119)(11,128)(12,129)(13,130)(14,126)(15,127)(16,121)(17,122)(18,123)(19,124)(20,125)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(96,155)(97,151)(98,152)(99,153)(100,154)(101,147)(102,148)(103,149)(104,150)(105,146)(106,145)(107,141)(108,142)(109,143)(110,144)(111,137)(112,138)(113,139)(114,140)(115,136)(131,157)(132,158)(133,159)(134,160)(135,156), (1,55,35,36)(2,51,31,37)(3,52,32,38)(4,53,33,39)(5,54,34,40)(6,140,160,154)(7,136,156,155)(8,137,157,151)(9,138,158,152)(10,139,159,153)(11,148,17,142)(12,149,18,143)(13,150,19,144)(14,146,20,145)(15,147,16,141)(21,47,27,41)(22,48,28,42)(23,49,29,43)(24,50,30,44)(25,46,26,45)(56,81,75,87)(57,82,71,88)(58,83,72,89)(59,84,73,90)(60,85,74,86)(61,76,67,95)(62,77,68,91)(63,78,69,92)(64,79,70,93)(65,80,66,94)(96,127,115,121)(97,128,111,122)(98,129,112,123)(99,130,113,124)(100,126,114,125)(101,135,107,116)(102,131,108,117)(103,132,109,118)(104,133,110,119)(105,134,106,120), (6,20)(7,16)(8,17)(9,18)(10,19)(11,157)(12,158)(13,159)(14,160)(15,156)(56,75)(57,71)(58,72)(59,73)(60,74)(61,67)(62,68)(63,69)(64,70)(65,66)(76,95)(77,91)(78,92)(79,93)(80,94)(81,87)(82,88)(83,89)(84,90)(85,86)(96,107)(97,108)(98,109)(99,110)(100,106)(101,115)(102,111)(103,112)(104,113)(105,114)(116,127)(117,128)(118,129)(119,130)(120,126)(121,135)(122,131)(123,132)(124,133)(125,134)(136,141)(137,142)(138,143)(139,144)(140,145)(146,154)(147,155)(148,151)(149,152)(150,153) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,35),(2,31),(3,32),(4,33),(5,34),(6,160),(7,156),(8,157),(9,158),(10,159),(11,17),(12,18),(13,19),(14,20),(15,16),(21,27),(22,28),(23,29),(24,30),(25,26),(36,55),(37,51),(38,52),(39,53),(40,54),(41,47),(42,48),(43,49),(44,50),(45,46),(56,75),(57,71),(58,72),(59,73),(60,74),(61,67),(62,68),(63,69),(64,70),(65,66),(76,95),(77,91),(78,92),(79,93),(80,94),(81,87),(82,88),(83,89),(84,90),(85,86),(96,115),(97,111),(98,112),(99,113),(100,114),(101,107),(102,108),(103,109),(104,110),(105,106),(116,135),(117,131),(118,132),(119,133),(120,134),(121,127),(122,128),(123,129),(124,130),(125,126),(136,155),(137,151),(138,152),(139,153),(140,154),(141,147),(142,148),(143,149),(144,150),(145,146)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,20),(7,16),(8,17),(9,18),(10,19),(11,157),(12,158),(13,159),(14,160),(15,156),(26,34),(27,35),(28,31),(29,32),(30,33),(36,41),(37,42),(38,43),(39,44),(40,45),(46,54),(47,55),(48,51),(49,52),(50,53),(56,61),(57,62),(58,63),(59,64),(60,65),(66,74),(67,75),(68,71),(69,72),(70,73),(76,81),(77,82),(78,83),(79,84),(80,85),(86,94),(87,95),(88,91),(89,92),(90,93),(96,101),(97,102),(98,103),(99,104),(100,105),(106,114),(107,115),(108,111),(109,112),(110,113),(116,121),(117,122),(118,123),(119,124),(120,125),(126,134),(127,135),(128,131),(129,132),(130,133),(136,141),(137,142),(138,143),(139,144),(140,145),(146,154),(147,155),(148,151),(149,152),(150,153)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,94),(7,95),(8,91),(9,92),(10,93),(11,82),(12,83),(13,84),(14,85),(15,81),(16,87),(17,88),(18,89),(19,90),(20,86),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,120),(7,116),(8,117),(9,118),(10,119),(11,128),(12,129),(13,130),(14,126),(15,127),(16,121),(17,122),(18,123),(19,124),(20,125),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(96,155),(97,151),(98,152),(99,153),(100,154),(101,147),(102,148),(103,149),(104,150),(105,146),(106,145),(107,141),(108,142),(109,143),(110,144),(111,137),(112,138),(113,139),(114,140),(115,136),(131,157),(132,158),(133,159),(134,160),(135,156)], [(1,55,35,36),(2,51,31,37),(3,52,32,38),(4,53,33,39),(5,54,34,40),(6,140,160,154),(7,136,156,155),(8,137,157,151),(9,138,158,152),(10,139,159,153),(11,148,17,142),(12,149,18,143),(13,150,19,144),(14,146,20,145),(15,147,16,141),(21,47,27,41),(22,48,28,42),(23,49,29,43),(24,50,30,44),(25,46,26,45),(56,81,75,87),(57,82,71,88),(58,83,72,89),(59,84,73,90),(60,85,74,86),(61,76,67,95),(62,77,68,91),(63,78,69,92),(64,79,70,93),(65,80,66,94),(96,127,115,121),(97,128,111,122),(98,129,112,123),(99,130,113,124),(100,126,114,125),(101,135,107,116),(102,131,108,117),(103,132,109,118),(104,133,110,119),(105,134,106,120)], [(6,20),(7,16),(8,17),(9,18),(10,19),(11,157),(12,158),(13,159),(14,160),(15,156),(56,75),(57,71),(58,72),(59,73),(60,74),(61,67),(62,68),(63,69),(64,70),(65,66),(76,95),(77,91),(78,92),(79,93),(80,94),(81,87),(82,88),(83,89),(84,90),(85,86),(96,107),(97,108),(98,109),(99,110),(100,106),(101,115),(102,111),(103,112),(104,113),(105,114),(116,127),(117,128),(118,129),(119,130),(120,126),(121,135),(122,131),(123,132),(124,133),(125,134),(136,141),(137,142),(138,143),(139,144),(140,145),(146,154),(147,155),(148,151),(149,152),(150,153)]])
95 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4K | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10AB | 20A | ··· | 20AR |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
95 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | 2+ 1+4 | 2- 1+4 | C5×2+ 1+4 | C5×2- 1+4 |
kernel | C5×C22.56C24 | C5×C4⋊D4 | C5×C22⋊Q8 | C5×C22.D4 | C5×C4.4D4 | C5×C42.C2 | C22.56C24 | C4⋊D4 | C22⋊Q8 | C22.D4 | C4.4D4 | C42.C2 | C10 | C10 | C2 | C2 |
# reps | 1 | 4 | 4 | 4 | 2 | 1 | 4 | 16 | 16 | 16 | 8 | 4 | 2 | 1 | 8 | 4 |
Matrix representation of C5×C22.56C24 ►in GL8(𝔽41)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
28 | 23 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 13 | 18 | 0 | 0 | 0 | 0 |
0 | 23 | 18 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 38 | 3 | 21 |
0 | 0 | 0 | 0 | 3 | 20 | 21 | 38 |
0 | 0 | 0 | 0 | 0 | 40 | 21 | 38 |
0 | 0 | 0 | 0 | 40 | 0 | 3 | 21 |
0 | 1 | 39 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 40 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 40 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 40 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 40 |
G:=sub<GL(8,GF(41))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[28,23,23,0,0,0,0,0,23,13,0,23,0,0,0,0,0,0,13,18,0,0,0,0,0,0,18,28,0,0,0,0,0,0,0,0,20,3,0,40,0,0,0,0,38,20,40,0,0,0,0,0,3,21,21,3,0,0,0,0,21,38,38,21],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,39,0,0,40,0,0,0,0,0,39,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,40,0,0,0,0,0,40,40,0],[0,40,40,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0],[1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,1,2,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40] >;
C5×C22.56C24 in GAP, Magma, Sage, TeX
C_5\times C_2^2._{56}C_2^4
% in TeX
G:=Group("C5xC2^2.56C2^4");
// GroupNames label
G:=SmallGroup(320,1564);
// by ID
G=gap.SmallGroup(320,1564);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,2571,436,6947,1242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=g^2=1,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=b*d=d*b,g*e*g=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=b*c*d,f*e*f^-1=b*c*e,f*g=g*f>;
// generators/relations